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Abstract
Interfaces between two immiscible electrolytic solutions (ITIES), which are
impermeable to ion transfer over a large potential range, offer immensely better
opportunities for fine shape control at low voltages than current electrowetting
systems. Also, ITIES can be described by a theoretical model with few free
parameters. This paper reveals, in full detail, the intricacies of a theory that
can be used to describe electrowetting equilibrium (previously discussed briefly
in Monroe et al (2006 Phys. Rev. Lett. 97 136102)). Families of curves are
presented to show how the contact angle between an ITIES and an electrode
varies with voltage, to gauge expectations for laboratory measurements. A
detailed analysis of the system construction, usually absent in theoretical papers,
is provided to illustrate how undesired artefacts due to experimental geometry
can be avoided. To contrast the case of ITIES, an analysis is also given for
systems with a completely ion-permeable liquid/liquid interface. Although the
latter system is very difficult to engineer, its comparison to ITIES illustrates the
unique features that the ion-impermeability of a liquid/liquid interface adds to
its electrowetting response.

1. Introduction

When a liquid/liquid interface contacts a solid substrate, applied voltages can cause the
interface to change shape. This electrowetting phenomenon affords an elementary means
by which liquid/liquid interfaces can be functionalized. Devices reliant upon electrowetting
require no internal machinery. Also, because shape is an equilibrium characteristic of a phase,
interfaces in these devices self-assemble and are difficult to destabilize. Hence the growing
popular ambition to exploit electrowetting in technologies like portable lenses, microfluidic
devices and electronic displays [1–3].

Current electrowetting systems involve an insulating liquid, which forms an interface with
an ionically conductive liquid [4]. Presumably this construction decreases the probability of
irreversible Faradaic processes at the phase boundaries. However, it also complicates the
system response significantly, because very high surface-charge densities can develop in the
insulating fluid near the three-phase (liquid/liquid/substrate) contact line [5].
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Recently the authors proposed a new class of electrowetting systems employing two
ionically conductive fluids [6, 7]. In this configuration, Faradaic processes at the liquid/liquid
interface can be prevented by using an Interface between Two Immiscible Electrolytic Solutions
(ITIES). Research on ITIES goes back to the time of Nernst. Applications of ITIES mainly
exploit adsorption characteristics, catalytic properties, mesoscale interfacial morphology and
the energetics of ion solvation [8]. However, the macroscopic electrowetting properties of
ITIES have gone relatively unnoticed.

ITIES-based systems have practical advantages for electrowetting applications. In current
devices, applied potentials in the range of 10–100 V are needed to achieve significant shape
variation [4]. With ITIES, similar shape changes can be induced with potentials of hundreds
of millivolts. This difference arises because in typical systems the field distributes relatively
evenly across the entire insulating-liquid phase, leading to significant voltage losses in its bulk,
whereas with ITIES both solutions form double layers (‘space-charge regions’ of excess charge
density very near phase boundaries) which localize potential drops over a distance of several
nanometres from the interfaces. As well as reducing the voltages for shape change, this field
localization makes the response of ITIES-based electrowetting systems relatively insensitive to
electrode geometry.

In previous work our group developed the linear electrostatic response of ITIES-based
systems consisting of an electrolytic droplet in contact with a metal electrode, both of which
are surrounded by an ambient electrolytic solution. We showed that the three-phase contact line
exhibits the divergent charge density characteristic of typical electrowetting systems, but that
this divergence makes a negligible contribution to the free energy when droplets are sufficiently
large [6].

Several groups have attributed contact-angle saturation (the approach to a limiting
interfacial shape at high potentials) to field divergence near the three-phase contact line [4]. But
in systems with ITIES, this effect does not influence the morphology of liquid/liquid interfaces,
except for a region within nanometres of the contact line [6]. Thus the shapes of macroscopic
ITIES are simpler to model than those of the liquid/liquid interfaces in typical electrowetting
systems.

In a recent short communication [7], we extended our previous theory to describe the
regime of large potentials. This work demonstrated that both contact-angle saturation and
dewetting (the detachment of a liquid/liquid interface from its substrate) can be rationalized
naturally by the conservation of material within the droplet, rather than field divergence.

This paper develops the theoretical basis of our previous work in substantially greater
detail. Here we derive the free-energy functional used in [7], revealing a number of avenues
by which simplifying assumptions can be relaxed. We also present a comprehensive set of
calculated results for ITIES with a range of properties. In addition, we treat the case where there
are two conductive fluids that contain a mutually miscible salt, which has not been considered
before.

The detailed treatment of electrowetting equilibria given below also provides information
which could guide the development of more precise computer simulations. The analysis
shows how to obtain (and generalize) every differential equation that would have to be solved
simultaneously in a numerical electrowetting model; it elucidates several physical constraints
that apply to the distributions which satisfy these equations, such as the equation of state, the
preservation of total ion content and the conservation of charge; it permits extension to nonideal
solutions, the analysis of which may be tractable only by numerical methods; it shows how the
experimental electrode geometry comes into play—and how the geometry of the counter and
reference electrodes may be important; and, finally, it lays out an analytical procedure that
could be paralleled step by step with an automated process.
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This paper is organized as follows. Section 2 develops a general thermodynamic approach
which is applicable to any equilibrated electrowetting system—including both conventional
systems and those with ITIES. A simplified form of the free-energy functional is developed.
Section 3 applies this simplified functional to find the equilibrium shape of an ITIES in
contact with a metal working electrode. Additional consideration is given to the shapes and
sizes of the reference and counterelectrodes, which are often neglected. Section 4 addresses
electrowetting scenarios with two ionically conductive fluids and a fully ion-permeable
interface, for comparison to ITIES.

The appendix provides a case study for the potential-dependent part of the functional.
A tutorial example, the parallel-plate double-layer capacitor, is treated to show how ion-
impermeable phase boundaries affect the distributions of ion concentration and potential within
a moderately dilute electrolytic solution. This appendix substantiates and defines many of the
physico-chemical principles applied in the main body of the work.

2. Thermodynamics of electrowetting

2.1. The free-energy functional

The equilibrium state of an electrowetting system at constant temperature and pressure is
characterized by the Gibbs free energy of the system, G. Its three primary constituents are
capillary energy, electrostatic energy, and electrochemical work:

G = C + V + W . (2.1)

Capillary energy, C , depends on the surface tension and area of each two-phase interface
in the system. Electrostatic energy, V , is defined as the work withdrawn from the system by an
external circuit connected to electrodes immersed in the system. V is negative when a voltage
source inputs energy to maintain charges on the electrodes. The electrochemical work, W , is
formed by the sum of electrochemical potentials of all the molecular or ionic species in bulk
phases between the electrodes. It includes local charge–charge interactions, mixing free energy,
and short-range specific interactions within each phase, as well as the work done by external
pressure on the phases.

A suitable approach to any equilibrium electrowetting problem is to express C and V in
forms appropriate to the number of distinct phases, introduce constitutive laws for the species
in each phase to write W , and then minimize the variation in G with appropriate constraints
to determine the interfacial shapes. This section considers the contributions to G in detail and
introduces physical conditions to simplify the functional before its variation is taken.

Most electrowetting scenarios involve several phases which need to be considered during
analysis: two types of fluid, the working electrode, the counterelectrode, and, possibly, a
reference electrode (or electrodes) immersed in the fluids. Here we consider only systems with
the geometry depicted schematically in figure 1. The figure shows a single liquid droplet (phase
d) surrounded by an ambient fluid (phase s). Both of the fluids contact a working electrode
(phase e), and the counterelectrode (phase c) touches the surrounding fluid only.

If ions are dissolved in the surrounding fluid, a single reference electrode (phase r), which
is electrochemically reversible3 to one of the ions, may also be placed in its bulk (far from e,

3 Reference electrodes must undergo oxidation or reduction reactions with one of the ions dissolved in the surrounding
electrolyte. Such a condition gives the ‘potential drop’ thermodynamic significance. Meaningful comparison of the
electrochemical work in two systems with differing chemical composition is only possible when the potentials in both
systems involve reversible reference electrodes and both potentials are referred to the same redox couple. A reference
electrode allows the potentials at electrodes e and c to be varied independently, and permits the differing chemistry
occurring at these interfaces to be assessed. Only a few sets of carefully referenced electrowetting data have been
published; for an excellent set of experiments see [9].
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Figure 1. Diagram of the experimental geometry, with labels corresponding to the various phases.

c, and d). In this case a voltage source which applies a potential drop between e and c can be
used to control the voltage read by the voltmeter, V.

2.2. Capillary term

The capillary energy in this system takes the form

C = γde Ade + γse Ase + γds Ads + (γsc Asc + γsr Asr), (2.2)

where γ jk is the surface tension and A jk the interfacial area between phases j and k. These
surface tensions are defined in the absence of an external electric field and are therefore constant
with respect to potential.

In equation (2.2) the terms involving the counter and reference electrodes are written in
parentheses because they are often omitted. Their omission from C is justified only if the
counter and reference electrodes have static shapes, if both remain in contact with a single
fluid for any droplet shape, and if the counterelectrode is very large. Under these conditions
the parenthetical term cancels further along in the analysis, when G is expressed relative to a
droplet-free reference state. Otherwise the term should be borne in mind; it is considered in
detail in section 3.2.

2.3. Electrostatic term

In practice V is supplied by a potentiostat, which maintains a fixed potential difference between
the working electrode and either the counterelectrode or reference electrode. For the system in
figure 1, the electrostatic work that can be produced by an electric field E which permeates the
droplet and surrounding fluid is

V = −ε0

2

∑

j=d,s

∫

Vj

ε j E · E dV , (2.3)

where ε0 is the permittivity of free space and ε j and Vj are the dielectric constant and volume
of phase j , respectively. Because the field may not be uniform within the droplet and its
surroundings, V is generally an integral over the two fluid phases. The specific properties of
the working, counter and reference electrodes do not appear in this equation explicitly; they
remain to be introduced later through boundary conditions on the electric field or potential.

2.4. Electrochemical term

In general W includes mechanical work, due to pressure differences between the droplet bulk
and the bulk of its surroundings, mixing free energy, due to irregular distributions of molecules
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within each phase, and Coulomb energy, due to the localization of discrete ionic charges in
solution. For a given species i in phase j these effects can all be expressed through the pressure,
temperature, voltage and composition dependence of the electrochemical potential, μ j i .

In a three-phase system where each fluid phase contains I j components, the
electrochemical work is

W =
∑

j=d,s

I j∑

i=1

∫

Vj

c jiμ j i dV , (2.4)

where c ji is the molar concentration of species i in phase j . This expression is also written as
an integral, because c ji and μ j i may vary locally within the droplet and surrounding fluid.

The constitutive law—Electrochemical potentials are given generally by [10]

μ j i = RT ln(a�
i f j i x j i) + z ji F�, (2.5)

in which R is the gas constant, T is the absolute temperature and F is Faraday’s constant; a�
i

is the activity of species i in a secondary reference state (a state such as ‘pure component i ’, at
the same temperature and pressure as phase j : more details, and definitions of reference states
for ions, are discussed in [10]). The particle fraction, equivalent charge and activity coefficient
of species i in phase j are respectively denoted by x ji , z ji and f j i . Here � is an electrostatic
potential, related to the electric field by E = −∇�.

Two physical considerations restrict the degrees of freedom available to parameters in the
constitutive law and must be obeyed for thermodynamic consistency. First, the particle fractions
in each phase sum to unity,

∑
i x j i = 1. Thus (I j −1) particle fractions specify the composition

of phase j ; consequently f j i = f j i (T, p, x j1, . . . , x j (I j −1)), where p is the external pressure (p
is positive when forces are compressive). Second, the Gibbs–Duhem equation [10] relates the
f j i when multiple species are present, and consequently f jn = f jn(T, p, f j1, . . . , f j (I j −1)).
For non-piezoelectric phases f j i does not depend on �.

An equation of state for the total molar concentration of phase j , c jT, is

1

c jT
=

I j∑

i=1

V ji x ji . (2.6)

The partial molar volume V ji is defined as

V ji =
(

∂Vj

∂n ji

)

T,p,n j k,k �=i

=
(

∂μ j i

∂p

)

T,n j k

, (2.7)

where the second identity is a Maxwell relation obtained from dG. Thus the equation of state
for phase j is contained in the constitutive laws for μ j i .

Electrochemical potentials in ideal solutions—A simpler constitutive law applies in cases
where the solutions behave ideally. An ideal solution is defined as one for which the partial
molar volumes of all species are constant, independent of composition; also, for solute i ,
f j i = 1. Then for all species, including the solvent,

μ j i = RT ln x ji + z ji F� + V ji p + constant. (2.8)

In an isothermal system the constant can be discarded: it is independent of p, � and all x ji .
Insertion of equation (2.8) into W gives

W =
∑

j=d,s

[
RT

∫

Vj

c jT

I j∑

i=1

x ji ln x ji dV +
∫

Vj

ρ j� dV +
∫

Vj

p dV

]
, (2.9)
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where the shorthand notation ρ j indicates the local excess charge density in solution j ,

ρ j = F
I j∑

i=1

z ji c j i . (2.10)

In equation (2.9), the first term in the brackets accounts for the free energy of mixing; the
second, for the Coulombic interactions among dissolved charged species; and the third, for
mechanical work.

Insertion of equations (2.2) (for C ), (2.3) (for V ), and (2.9) (for W ) into equation (2.1)
(for G) gives a free-energy functional that describes single-droplet electrowetting equilibrium
in a broad range of experimental circumstances.

Ideal versus nonideal—For moderately dilute solutions, the ideal-solution approximation
is known to describe the space-charge distributions near interfaces fairly accurately. It will be
used throughout the remainder of this work. However, this section has provided the structural
framework needed to extend the description to nonideal solutions.

3. Electrowetting with ITIES

The variational approach to the electrostatic and electrochemical parts of the free-energy
functional is relatively involved. A summary of the general principles applicable to electrolytic
phases with impermeable boundaries is given in the appendix, where the variational procedure
is illustrated by a simple example. Interested readers may want to consult the appendix
at this point. It summarizes the qualitative principles applicable to any electrolytic phase
which conserves its contents under potential bias. Also, a number of analytical details are
provided there which justify the choice of electrostatic governing equations and constraints
here.

This section treats the electrowetting geometry shown in figure 1 for a situation where
the interface between phases d and s is an ITIES. The most significant physical feature of
ITIES is that the ions in both solutions have very high free energies of transfer. One solution
typically consists of a ‘fatty’ salt, such as tetrabutylammonium tetraphenylborate, dissolved
in an organic solvent, like nitrobenzene. The other solution is usually composed of an alkali
halide, such as lithium chloride, dissolved in water. Both salts are extremely well solvated in
their phases of origin. The liquid/liquid interface behaves as if it is impermeable to ions from
either side (i.e. it is ideally polarizable). Inspection of the capacitance response of ITIES shows
that this behaviour can manifest over a broad potential range [11]. Thus in an electrowetting
system with an ITIES, the droplet phase conserves its contents—no ions enter or leave it when a
voltage within the ideal-polarizability window is applied. The conservation of droplet contents
plays an important role in determining the electrostatic and shape equilibrium of the system.

It is assumed that no Faradaic processes occur at the working and counterelectrodes
(i.e. they are also ideally polarizable). Therefore the surrounding phase also conserves its
contents under potential bias.

The following subsections treat electrowetting of ideal, dilute ITIES, for which the free-
energy functional was derived in section 2. Note that the electrostatic analysis relies on many
of the basic procedures laid out in appendix A.2, which are avoided for brevity here.

Functional analysis of ITIES-based electrowetting is more intricate than the simpler
example shown in the appendix, which involves only one liquid phase. In the case of ITIES,
two liquids, with characteristic electrolytic properties, internal pressures and volumes must be
considered. Also, for the experimental geometry shown in figure 1, interphase contact areas of
five different types come into play.

6
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Because the surrounding solution contains a buffer, it is appropriate to measure the
potential drop relative to a reference electrode in the bulk of the surroundings (phase r in
figure 1), rather than relative to the counterelectrode (phase c). Below, the working-to-reference
potential drop is taken to be an experimentally controlled parameter.

3.1. The droplet-free reference state

When considering capillary and mechanical terms in the free-energy functional, the first
concerns are the volumes of the droplet and the surroundings, Vd and Vs, and the areas of
the five two-phase interfaces, Ase, Ade, Ads, Asc and Asr (cf figure 1). Typically Vd is fixed
experimentally by, say, placing the droplet on the surface of the working electrode with a
micropipette. When capillary equilibrium is reached without an applied voltage, there is a
repeatable correspondence between Vd and Ade.

If voltages are varied, all of the geometric parameters must be considered; the surface-
charge densities at every one of the five interfaces may depend on their geometry. In different
experimental setups, the areas Ase, Asc and Asr, and the volume of the surrounding fluid, Vs,
may be of arbitrary size compared to the droplet. (And these sizes are typically not reported.)
However, the description can still be reduced essentially to a correspondence between Vd and
Ade if the system free energy is expressed as an excess function. It is therefore convenient to
write G as a free-energy difference, relative to the free energy of a state with the same electrode
geometry, with the same surrounding solution, at the same potential, but without a droplet. This
reference scenario is called the droplet-free state.

To analyse the droplet-free state, consider the volume occluded by the droplet in figure 1 to
instead be occupied by the surrounding solution. Then the entire space filled by the electrolyte,
with total volume VT = Vd + Vs, has the properties of the surroundings. Similarly, the total
area of the working electrode contacting the electrolyte, ATe, is ATe = Ade + Ase.

As clarified in section A.2, if the surrounding phase is an isothermal, dilute, ideal
electrolytic solution, then its ions are Boltzmann distributed with respect to potential. The
electrostatic and internal-work contributions to G can therefore be re-expressed in terms of
two simpler functionals, one dependent on � only, and one dependent only on the pressure
distribution:

V [�] + W [cs+, cs−,�, ps] = E [�] +
∫

VT

ps dV . (3.1)

For electrolytic solutions with 1:1 salt stoichiometry in the droplet-free state, E is given by

E = −RT cref
s

[
1

κ2
s

∫

VT

∇φ · ∇φ dV + 2
∫

VT

[cosh(φ − φref
s ) − 1] dV

]
, (3.2)

where dimensionless potentials φ and φref
s are defined as

φ = z F�

RT
and φref

s = z F�ref
s

RT
(3.3)

to simplify notation. (At room temperature, these represent potentials counted in units of
∼ 25 mV.) Other dimensionless potentials are used later and have analogous definitions. The
inverse Debye length, κs, is

κs =
√

2F2z2 〈cs〉
ε0εs RT

, (3.4)

where 〈cs〉 is the average salt concentration in the surroundings. Because the salt is 1:1,
zs+ = −zs− = z.
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In equation (3.2), both φref
s and cref

s are Lagrangian parameters, which satisfy constraints on
the potential and concentration distributions. Impermeability of the boundaries of VT requires
that self-consistent results satisfy two conditions: (1) the interior of the region must have
zero total charge and (2) the total amount of salt within the region must be the same at all
applied potentials. These constraints can both be expressed as integrals of the ion-concentration
distributions, and used to determine the bulk potential φref

s and the reference concentration cref
s .

The reference concentration can be thought of as the ‘bulk salt concentration’, which in
general is slightly lower than 〈cs〉 because applied voltages draw ions toward both electrodes.
(Appendix A.2 justifies this statement in greater detail.) By placing a lower bound on the phase
size, cref

s can be eliminated, as implemented shortly.
The variation of E with respect to potential shows that φ obeys a nonlinear Poisson–

Boltzmann equation similar to equation (A.11):

1

(χsκs)2
∇2(φ − φref

s ) = sinh(φ − φref
s ). (3.5)

Here χs is the inverse-Debye-length reduction factor, determined by differences between the
bulk concentration and the average concentration: χs = √

cref
s /〈cs〉.

Equation (3.5) should be solved subject to boundary conditions where φs = φe at the
surface of working electrode e, φr = φref

s at the surface of reference electrode r (because the
electrochemical reaction at its surface is in equilibrium with phase s) and φs = φc at the surface
of the counterelectrode.

The potential difference 
φ = (φe − φr) = (φe − φref
s ) is experimentally controlled.

As shown below, the working-to-counter potential difference (φe − φc) can be related to 
φ

because VT has ion-impermeable boundaries.
Several principles summarized in appendix A.4 now come in handy. First, if the distance

between electrodes is greater than ∼1000 Debye lengths, then cref
s in equation (3.2) can be

safely taken to equal the average concentration (cf equation (A.21)); consequently χs = 1 in
equation (3.5). This also allows concentration overpotentials induced by 
φ to be neglected at
the surface of the reference electrode. Second, if the average interelectrode distances are more
than a few hundred Debye lengths, then the potential distribution in the solution as a function
of the distance y normal to the surface of electrode e is

φse(y) = 2 ln

[
1 + tanh

(
1
4
φ

)
e−κs y

1 − tanh
(

1
4
φ

)
e−κs y

]
+ φref

s . (3.6)

This is the familiar nonlinear Gouy–Chapman result [12, 13], modified such that the potential
reaches φref

s in the bulk and the potential drop 
φ = φe − φref
s is fixed.

In principle, if the working and counterelectrode are far apart, they need not be parallel.
At a distance y ′ normal to the surface of counterelectrode c, the potential distribution in the
solution is

φsc(y ′) = 2 ln

[
1 + tanh

[
1
4
φ − 1

4 (φe − φc)
]

e−κs y′

1 − tanh
[

1
4
φ − 1

4 (φe − φc)
]

e−κs y′

]
+ φref

s . (3.7)

From these it follows that the surface-charge densities at electrodes e and c are

σe = −2ε0εsκs sinh( 1
2
φ) and σc = −2ε0εsκs sinh[ 1

2
φ − 1
2 (φe − φc)]. (3.8)

But, because the electrolytic solution has ion-impermeable boundaries, the total charge within
it must be zero. Therefore the total surface charges at e and c are equal and opposite:

σe ATe + σc Asc = 0. (3.9)

8
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Thus


φ = 2 tanh−1

[
sinh

(
1
2φe − 1

2φc
)

ATe
Asc

+ cosh
(

1
2φe − 1

2φc
)
]

(3.10)

gives the promised equation for (φe − φc) in terms of 
φ. Note that when ATe/Asc 	 1, the
potential drop reduces to 
φ = φe − φc.

The same considerations used for the potential distributions can be applied to justify the
expression of E per unit electrode area. When the interelectrode distance is very large compared
to the Debye length (>1000/κ), the integral in equation (3.2) can be broken into two terms,
each of which is a semi-infinite integral near one of the electrodes. Insertion of the potential
distributions from equations (3.6) and (3.7) into the integral in equation (3.2) yields

E = −16RT cs

κs
sinh2

(
1
4
φ

)
ATe − 16RT cs

κs
sinh2

[
1
4
φ − 1

4 (φe − φc)
]

Asc

= E se ATe + E sc Asc, (3.11)

where the last equality introduces the convenient notation E i j to indicate the potential-
dependent energy per unit area at interface i j . Note that the overbar in E i j does not indicate
an average: because the electrodes are equipotential surfaces, the volume integral is uniform in
directions tangential to the interfaces.

All quantities related to the droplet-free state will henceforth be indicated with a
superscript 0. For instance, the free energy of the droplet-free state is G0. Incorporation of
C from equation (2.2) into the general functional, equation (2.1), yields

G0 = (γse + E
0
se)ATe + (γsc + E

0
sc)Asc + γsr Asr +

∫

VT

p0
s dV . (3.12)

Here the two E
0
i j are defined by equation (3.11), and the potential difference (φe − φc), upon

which E
0
sc depends, is given implicitly in terms of 
φ by equation (3.10).

Note that the effective surface tension measured in electrochemistry is typically taken
to depend on potential. In the present approach, γi j is taken to be constant (equal to the
surface tension with no applied potential). The potential-dependent part of the surface energy
is considered explicitly in W (cf equation (2.4)).4

3.2. Electrostatics with ITIES

Having established the background, droplet-free state, the electrowetting of an ITIES for the
configuration shown in figure 1 can now be analysed. The analysis is limited to droplets with
an average radius of curvature greater than 1000 droplet-phase Debye lengths. For droplets of
this size, the energetic contribution of the three-phase contact line can be neglected [6]. The
free-energy functional then reduces to

G =
(
γde + E de

)
Ade +

(
γse + E se

)
Ase +

(
γds + E ds

)
Ads +

(
γsc + E sc

)
Asc

+ γsr Asr +
∑

j=d,s

∫

Vj

p j dV . (3.13)

4 Thus equation (3.12) can be used to derive a standard Lippmann equation [27], showing that the present approach
is consistent with Gibbs–Lippmann theory. But the functional method specifies what constraints on phase volume
are necessary for a Lippmann equation to be valid: if the electrolytic phase has a characteristic size much less than
1000 Debye lengths, then the volume integrals in equation (3.2) cannot be decomposed into independent surface
contributions, and the Gibbs–Lippmann isotherm may fail.
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This equation distinguishes several new potential-dependent energies per unit area: one at the
electrode/surroundings interface, E se, one at the droplet/electrode interface, E de, and one at the
droplet/surroundings interface, E ds. These are calculated below.

Because interface ds is an ITIES, the droplet boundaries are ion-impermeable. Therefore
the droplet interior should be treated according to the procedure given in section A.2. There
is a bulk potential within the droplet, φref

d , around which a potential plateau forms, as well as
a bulk potential in the surroundings, φref

s . The droplet/surroundings interface is essentially an
equipotential surface [6]. In the same way as in the droplet-free state, the potential difference

φ = (φe − φr) = (φe − φref

s ) is experimentally controlled. (This definition requires that the
reference electrode contacts the surrounding solution only.) The droplet is also taken to contain
a 1:1 electrolyte.

Following the analytical procedure developed for the droplet-free state, one obtains

E se = −16RT cs

κs
sinh2

(
1
4
φ

)
and E de = −16RT cd

κd
sinh2

(
1
4
φ − 1

4φ∗
)
,

(3.14)

where the latter introduces φ∗ = (φref
d − φr) = (φref

d − φref
s ) to represent the potential of the

droplet bulk relative to the reference electrode. Here κd has a definition analogous to κs, with the
same value of z but with 〈cs〉 and εs replaced with 〈cd〉 and εd, respectively (see equation (3.4)).
The surface-charge densities at the working electrode along contact areas se and de are

σse = −2RT ε0εsκs sinh
(

1
2
φ

)

Fz
and σde = −2RT ε0εdκd sinh

(
1
2
φ − 1

2φ∗
)

Fz
.

(3.15)

The energy and surface-charge density at the counterelectrode are

E sc = −16RT cs

κs
sinh2

[
1
4
φ − 1

4 (φe − φc)
]

and

σsc = −2RT ε0εsκs sinh
[

1
2
φ − 1

2 (φe − φc)
]

Fz

(3.16)

These equations imply that the counterelectrode contacts only the surrounding solution.
The final portion of the electrostatic analysis involves the potential distribution at the

liquid/liquid interface. Equations that describe this interface involve the Debye lengths and
dielectric constants in both the droplet and the surrounding solution. Notation can be simplified
significantly by introduction of the parameter C , defined as

C =
√

εsκs

εdκd
. (3.17)

The specific double-layer capacitance (per unit area) yielded by linear Gouy–Chapman
theory [12, 13] is ε0εκ . Thus C2 is the linear Gouy–Chapman capacitance of the surroundings
over the linear Gouy–Chapman capacitance of the droplet.

For ITIES where the free energies of transfer for all ions are high, the potential distribution
can be taken from the Verwey–Niessen theory [14]. This theory works fairly well, even in cases
where free energies of transfer are only of order 0.1 eV [11, 15]. It shows that the potential-
dependent contribution to the energy per unit area of interface ds is

E ds = ε0
√

εdεsκdκs

(
2RT

Fz

)2 [(
C + 1

C

) −
√(

C + 1
C

)2 + 4 sinh2
(

1
4φ∗

) ]
. (3.18)

Also, on the droplet side of interface ds, the surface-charge density is

10
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σds = 2RT ε0
√

εdεsκdκs sinh
(

1
2φ∗

)

Fz
[(

C + 1
C

)2 + 4 sinh2
(

1
4φ∗

)]1/2
. (3.19)

On the surroundings side of ds, the surface-charge density is equal and opposite to this.
Using σde and σds from equations (3.15) and (3.19), one can determine φ∗ in terms of 
φ.

The droplet interior has zero total charge, which can be expressed as a constraint on the surface
charges at its boundaries:

σde Ade + σds Ads = 0. (3.20)

Insertion of equations (3.15) and (3.19) and some algebraic rearrangement give

Ade

Ads
= C sinh

(
1
2φ∗

)
/sinh

(
1
2
φ − 1

2φ∗
)

√(
C + 1

C

)2 + 4 sinh2
(

1
4φ∗

) . (3.21)

Thus φ∗ and 
φ relate to the interfacial areas which bound the droplet.
The surrounding-solution phase also sustains no total charge, allowing (φe − φc) to be

found in terms of 
φ and φ∗. The constraint on the surface charge of the surrounding solution
is

−σds Ads + σse Ase + σsc Asc = 0. (3.22)

A negative sign appears because the surroundings side of ds has a surface-charge density
opposite to that on the droplet side.

Insertion of equation (3.20) to replace σds Ads with −σde Ade (which has a simpler form),
followed by insertion of the relevant surface-charge densities and manipulation with the total
working-electrode area ATe = Ade + Ase, gives a relationship between 
φ, (φe − φc) and φ∗:


φ = 2 tanh−1

[
sinh

[
1
2 (φe − φc)

] + C−2 sinh
(

1
2φ∗

) Ade
Asc

ATe
Asc

+ cosh
[

1
2 (φe − φc)

] + Ade
Asc

[
C−2 cosh

(
1
2φ∗

) − 1
]
]

. (3.23)

Note that this equation reduces to equation (3.10) only when Ade/Asc is very small, or in the
stricter case where the whole working electrode is much smaller than the counterelectrode,
ATe/Asc 	 1. Thus, if it is not sufficiently large, the counterelectrode may play a role in
determining the droplet shape, as elaborated in section 3.3.

Equations (3.14), (3.16) and (3.18) give the energies stored per unit area at each of
the relevant phase boundaries in terms of 
φ (the working-to-reference potential drop), φ∗
(the droplet-bulk-to-reference potential drop) and (φe − φc) (the working-to-counter potential
drop). Equations (3.21) and (3.23) supply two relations which can be used to obtain φ∗ and
(φe − φc) self-consistently in terms of 
φ and geometric parameters. Thus, with 
φ fixed, the
electrostatic problem is solved for droplets of arbitrary shape. All that remains is to find the
droplet shape which minimizes the excess free energy.

3.3. Droplet shapes with ITIES

The free-energy functional relative to a droplet-free state, 
G = G − G0, is


G = (γde − γse + E de − E
0
se)Ade + (γds + E ds)Ads

+ (E sc − E
0
sc)Asc +

∫

Vd

(pd − p0
s ) dV . (3.24)

The arbitrarily large area Ase and the portion of the volume integral that ranges over Vs cancel

upon subtraction. Cancellation is possible because E se = E
0
se and, in Vs, ps = p0

s .

11



J. Phys.: Condens. Matter 19 (2007) 375113 C W Monroe et al

Figure 2. Schematic diagram of axes used for Euler–Lagrange analysis of droplet shapes.
Rotational symmetry is assumed about the h-axis. The height of the droplet apex is hd. (a) An
arbitrary member of the family of functions W (h). (b) The equilibrium surface profile which
satisfies equation (3.28)—the surface has constant radius of curvature rd and a surface contact
angle αc.

This functional simplifies further by adopting two additional approximations. First,
the area of contact between the counterelectrode and the surroundings, Asc, is taken to be
large compared to the droplet/electrode contact area Ade. In that case a comparison of
equations (3.10) and (3.23) shows that the working-to-counter potential drop (φe − φc) in

the droplet-free state is the same as in the state with the droplet: E sc = E
0
sc. Second, if the

droplet is sufficiently small that the buoyant force on it due to gravity can be neglected, then
the pressure distributions can be replaced with constants. The functional becomes


G = (γde − γse + E de − E
0
se)Ade + (γds + E ds)Ads + Vd
p, (3.25)

where 
p is the difference between the external pressure in the droplet bulk and the ambient
pressure5. This pressure difference is a Lagrangian parameter, the value of which is set by the
constraint that Vd is constant.

To find the droplet shape: consider an axis h which extends from the droplet apex (where
h = 0) toward the working electrode, intersecting de normally to its surface (at h = hd). Thus
the height of the droplet apex is hd and the shape of the liquid/liquid interface is a member of
the family of functions W (h). A schematic diagram is shown in figure 2.

The relevant interfacial areas are given in terms of W by

Ade = πW 2(hd) and Ads = 2π

∫ hd

0
W (h)

√

1 +
(

dW

dh

)2

dh, (3.26)

and the droplet volume is

Vd = π

∫ hd

0
W 2(h) dh. (3.27)

After these are put into equation (3.25), the corresponding Euler–Lagrange equation reads

W ′′
[
1 + (W ′)2

]3/2
− 1

W
[
1 + (W ′)2

]1/2
= 
p

γds + E ds

. (3.28)

5 When all the E i j are taken to be zero (that is, when 
φ = 0, or if electrochemical energy E is neglected), this
expression becomes the functional from which the Young–Laplace equation is usually derived [16].

12



J. Phys.: Condens. Matter 19 (2007) 375113 C W Monroe et al

This is a differential equation for W (h); the right side depends on system parameters but is
constant with h.

If W (h) describes a circular arc with constant radius of curvature rd, and W ′(0) = ∞, as
required by axial symmetry about the droplet apex, then

W (h) =
√

r 2
d − (rd − h)2 = √

h(2rd − h), (3.29)

and the geometric parameters become

Ade = πhd(2rd − hd), Ads = 2πhdrd, and Vd = πh2
d(rd − 1

3 hd). (3.30)

Then the Euler–Lagrange equation reduces to


p = −2(γds + E ds)

rd
, (3.31)

independent of h. It has been proved that equation (3.29) represents a unique solution to the
augmented Euler–Lagrange formula in equation (3.28) [6]. Thus, even with applied potentials,
the free energy is minimal when the droplet is a plane-truncated sphere6. Because rd is constant,
equation (3.31) also allows the Lagrangian parameter 
p to be exchanged for rd.

Insertion of equations (3.30) and (3.31) into (3.25) gives


G = π(γde − γse + E de − E
0
se)hd(2rd − hd) + 2π(γds + E ds)hd

(
rd − hd + h2

d

3rd

)
, (3.32)

which can be optimized with respect to the height of the droplet apex, hd. Set ∂
G/∂hd = 0
and rearrange to show

1 − hd

rd
= (γse + E

0
se) − (γde + E de)

γds + E ds

. (3.33)

After all this, it is finally permitted to apply the constraint on droplet volume. This relates the
radius of a plane-truncated sphere to its apex height through

rd = Vd

πh2
d

+ hd

3
. (3.34)

Substitution of equation (3.34) into (3.33) gives a cubic equation for the apex height which
minimizes 
G at a given 
φ.

3.4. Contact angles for electrowetting with ITIES

Governing equations for equilibrium contact angles—During experimental measurements, the
height of the droplet apex alone is not important. Typically one measures the contact angle at
the three-phase contact line. Let αc denote the internal contact angle of the droplet with the
working electrode. Then

cos αc = 1 − hd

rd
and

Ade

Ads
= A = 1 + cos αc

2
. (3.35)

The first relation shows that equation (3.33) gives the cosine of the contact angle explicitly.
Note that the second introduces the notation A = Ade/Ads.

6 Although [6] proved uniqueness in the linear potential regime, it is straightforward to extend the method shown there
to the nonlinear case. Note that the droplet will not be a truncated sphere in cases where the solid substrate is not an
equipotential surface or if buoyant forces are significant. The former is not the case for metal electrodes, and the latter
can be neglected if the droplet mass is very small, or if the density difference between the fluids is negligible.

13



J. Phys.: Condens. Matter 19 (2007) 375113 C W Monroe et al

Two cumulative dimensionless parameters simplify the final expressions. The first, b,
characterizes the relative importance of electrostatic and capillary forces:

b = ε0
√

εdεsκdκs

γds

(
RT

Fz

)2

. (3.36)

The second, cos α0
c , is the droplet/electrode contact angle without an applied potential:

cos α0
c = γse − γde

γds
, (3.37)

which is simply Young’s equation from the capillary theory.
Incorporation of the quantities A, b and cos α0

c allows the result for the contact-angle
variation of an ideal, dilute ITIES to be written as

cos αc = 2A (
φ, φ∗) − 1, (3.38)

where

A (
φ, φ∗) = C sinh
(

1
2φ∗

)
/sinh

(
1
2
φ − 1

2φ∗
)

√(
C + 1

C

)2 + 4 sinh2
(

1
4φ∗

) , (3.39)

and φ∗ is obtained from the transcendental equation

8b
[

1
C sinh2

(
1
4
φ − 1

4φ∗
) − C sinh2

(
1
4
φ

)] + cos α0
c + 1 − 2A(
φ, φ∗)

+ 4b
[(

C + 1
C

) −
√(

C + 1
C

)2 + 4 sinh2
(

1
4φ∗

)][1 − 2A(
φ, φ∗)] = 0.

(3.40)

The first relation follows from the definition of A; the second comes from the charge constraint
on the droplet interior, through equations (3.21) and (3.35). The last equation determines φ∗,
and was obtained by insertion of equations (3.14) and (3.18) into (3.33). As stated before, the
working-to-reference potential drop 
φ is subject to experimental control by a potentiostat.
The parameters C and b are fixed by the choice of solution composition in both phases, and
cos α0

c additionally depends on the electrode material (cf equations (3.17), (3.36) and (3.37)).
Summary of approximations—It is worthwhile to summarize the approximations made to

find equations (3.38)–(3.40):

(1) The working electrode and counterelectrode were assumed to be ideally polarizable. If
significant Faradaic processes occur in a system, a dynamic theory is required.

(2) The droplet and surrounding liquid were taken to be ideal, dilute electrolytic solutions,
which restricts the results to moderate or low salt concentrations in both liquids. This
could be relaxed by adopting the more general law for bulk electrochemical potentials
given in section 2.4.

(3) It was assumed that the area of contact between the counterelectrode and the surroundings
is much larger than the droplet/electrode contact area. If necessary this approximation
could be relaxed by retaining the full equation (3.23).

(4) Specific adsorption of ions at the electrodes was neglected. This could be relaxed by
incorporating additional planar phases near the electrodes, in adsorption equilibrium with
the bulk, using appropriate isotherms (Langmuir, Frumkin, etc).

(5) Diffuse Gouy–Chapman theory was adopted near the electrode surfaces. With large
applied potentials, the so-called ‘compact-layer’ contribution, neglected above, may
become significant [17, 18]. This effect will be considered elsewhere.
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Figure 3. Characteristic responses of αc to rising 
φ for electrowetting with an ITIES, plotted as a
phase diagram in the C/α0

c plane, with b = 0.005. (I) Angle rises until dewetting. (II) Angle rises
until saturation. (III) Angle initially falls, but reverses, with eventual saturation. (Figure reprinted
from [7].)

(6) The previous two assumptions relate to the ‘potential of zero charge’ (PZC), which is an
important concept in electrochemistry. In particular, the diffuse-layer capacitance has a
minimum at the PZC. We have assumed for simplicity that the PZC for both solutions
are equal, and coincide with the open-circuit potential measured relative to the reference
electrode. The PZC between the two electrode/electrolyte interfaces can be included, but
this introduces two unknown parameters to the problem. Measurement of these parameters
is a challenging electrochemical problem in itself; once such data are available, they can
be incorporated into the boundary conditions when solving the electrostatic governing
equations.

(7) The interelectrode distances and the droplet radius were taken to be greater than 1000
Debye lengths (∼1 μm at typical concentrations), placing a lower limit on system size.

(8) An upper limit on droplet size (or, alternatively, a constraint on the solution densities) was
imposed by the neglect of buoyant forces.

Some of these approximations were made solely to achieve compact results. They can all
be relaxed, but at the cost of analytical transparency. Numerical solution of the appropriate
electrostatic governing equations, by finite-element procedures or otherwise, followed by
numerical solution of the resulting Euler–Lagrange equation for shape, would be the methods
of choice for computer simulations.

Results and discussion—Contact-angle responses of ITIES were described briefly in [7].
A more complete picture is provided here.

The contact-angle response falls into three regimes, determined mainly by C and cos α0
c .

A phase diagram for contact-angle response yielded by equations (3.38)–(3.40) is given in
figure 3. Key features shown on the diagram are:

(1) Due to the constraint on its interior charge, the droplet’s contact angle begins to rise when

φ becomes sufficiently large. That is, the droplet/electrode contact area will eventually
contract, no matter what the composition of the surrounding phase.

(2) When C > 1, the potential drop may cause the droplet to leave the electrode surface
altogether (dewetting). When C < 1, it is not favourable for the droplet to leave the
surface. Instead, the contact angle saturates to a limiting angle as the potential rises.

(3) When C < 1 and the initial contact angle is obtuse the contact angle may decrease, i.e. the
droplet/electrode contact area may expand, at low or moderate potentials.
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Figure 4. The partition factor φ∗/
φ as a function of αc for C = 1.225. Contours show
that partitioning of potential to the droplet bulk increases with the dimensional potential drop

�. At equilibrium, both φ∗ and αc must satisfy all three of equations (3.38)–(3.40) for a
given 
�. This figure shows the formal relationship among φ∗, αc, and 
� determined by
equations (3.38) and (3.39) alone, which depends on the capacitance ratio C only. For a particular
system, equilibrium corresponds to a single point on each equipotential contour, the position of
which also satisfies equation (3.40) and depends on b and α0

c .

In previous work [7] the properties of φ∗ were not addressed. However, since φ∗ is a
signature of the charge conservation within the droplet, its behaviour helps to illuminate how
the system functions. The partition factor, φ∗/
φ, gives the fraction of the applied working-to-
reference potential drop that occurs across the liquid/liquid interface. Potential partitioning may
be important for phase-transfer catalysis applications, in which it can affect reaction kinetics.

The partition factor can be found as a function of contact angle by insertion of
equation (3.38) into equation (3.39). It depends only on the capacitance ratio C and the applied
potential, and is independent of both b and cos α0

c . Figure 4 shows φ∗/
φ as a function of
contact angle and potential for the case where C = 1.225—typical of a 0.01 M nitrobenzene-
solvated droplet, surrounded by a 0.01 M aqueous solution, at room temperature. In the figure,
potential has been expressed dimensionally to make its order of magnitude clearer. As the
figure shows, the partitioning of potential to the droplet bulk decreases monotonically with
increasing contact angle. However, as the potential drop increases, the partition factor does as
well. Moreover, as potential increases, φ∗ stays near its maximum over an increasingly broad
range of angles. The maximum values of the partition factor in the limits of small and large
potentials are

lim

φ	1

φ∗

φ

= C4 + 1

C4 + C2 + 1
and lim


φ1

φ∗

φ

= 2

3

(
1 − 2 ln C


φ

)
. (3.41)

Thus, at very low potentials the partitioning is determined mainly by C . At large potentials, the
partition factor asymptotically approaches a maximum of 2/3, as seen in figure 4.

Last let us briefly discuss b, which scales the impact of electrostatic action relative to
that of capillary action. Figure 5 shows the contact-angle response and �∗/
� as a function
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Figure 5. Contact angle, αc, and partition potential, �∗/
�, plotted as a function of 
� for
electrowetting with an ITIES. In rows from top to bottom, values of C and α0

c correspond to regimes
I, II and III on figure 3. In columns moving right, b = 0.05, 0.005 and 0.0005.

of applied potential. Nine combinations of C , α0
c and b are shown. Values of C and α0

c are
chosen to correspond to each of the three regimes on figure 3; the contact-angle responses in
these regimes are then plotted for three different orders of magnitude for b. More dramatic
contact-angle response occurs with the same potential if b is larger: to achieve greater changes
of contact angle with the same potential, salt content can be increased in both liquids, or a
surfactant added to lower the liquid/liquid surface tension.
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4. Electrowetting with an ion-permeable interface

One may now ask: if a system could be constructed with two conductive liquids and a
completely ion-permeable interface, what would its electrowetting response be? This can be
answered based on the results of the preceding section, but first one must question exactly how
such a system could be engineered.

Complete ionic permeability requires that the free energies of transfer for all ions
are zero. Data from various sources for the transfer free energies of a number of
ions, at water/nitrobenzene and water/1,2-dichloroethane interfaces, are summarized in [26].
The lowest energetic transfer costs are for nitrobenzene and water as solvents, with
tetraethylammonium iodide (TEAI) dissolved in both solutions. (Even in this case, iodide
has an appreciable free energy of transfer, ∼0.05 eV, but it is the anion with the lowest transfer
energy for this solvent pair.)

Composition equilibrium for this system would also require that the chemical potential of
the TEAI be equal in both phases. To prepare solutions for which this is the case, a fixed
amount of TEAI could be added to a stirred emulsion of water and nitrobenzene, and the
solution allowed to equilibrate. After stirring was ceased, the two liquids could be separated
by decanting. To establish their equilibrium concentrations, the densities of the decanted
solutions could be compared to independent measurements of the density as a function of
concentration.

Considerations like the above would be necessary to eliminate charge accumulation at the
droplet/surroundings interface. None of these experimental requirements have been met for
existing electrowetting systems, be they ones with ITIES or with one insulating fluid. Neither
would such a system be easy to realize in practice. It is therefore surprising that charge
accumulation at the droplet/surroundings interface has not been given more attention in the
literature.

If a suitable choice of mutually miscible salt, with negligible transfer free energy, existed,
and if a suitable reference electrode could be constructed to be reversible to the salt, then
an applied potential drop between the working and reference electrodes would induce no
potential drop across the liquid/liquid interface7. The contact-angle response would be given
as a function of potential by

cos αc = cos α0
c − 8b

(
C − 1

C

)
sinh2

(
1
4
φ

)
. (4.1)

This result is obtained simply by discarding the charge-constraint equation (3.39), setting φ∗ to
zero, and using equation (3.38) to replace A in equation (3.40).

This expression only yields two regimes of contact-angle response, which are shown on
the phase diagram in figure 6, drawn for comparison to figure 3. Of course, the solution hardly
merits a phase diagram, because the response predicted by the equation is independent of
both α0

c and b. If C > 1 (the surroundings have a higher Gouy–Chapman capacitance than
the droplet), the droplet will contract until it dewets. If C < 1, the droplet expands until it
completely covers the electrode surface.

Figure 7 gives characteristic curves for αc versus potential. Note that the inflection points
exhibited by all the curves on figure 5 are absent. The absence of inflection points is at variance
with experimental observations, in which contact-angle saturation is typical [4].

The mutually opposed double layers which arise inside an electrolytic droplet have
been overlooked in the past. This essential feature of electrowetting physics should also be

7 For there to be no potential drop across the liquid/liquid interface, both ions must have transfer free energies exactly
equal to zero. Note: if the free energies of transfer for both ions are truly zero, and both electrolytic solutions are truly
ideal, then the equilibrium salt concentrations in both solutions have to be equal, and C differs from 1 only because the
solvents have different dielectric constants.
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Figure 6. Characteristic responses of αc to rising 
φ for an ion-permeable interface in a system
with two mutually miscible salts, plotted as a phase diagram in the C/α0

c plane, with b = 0.005.
(I) Angle rises monotonically until dewetting. (II) Angle falls monotonically until the droplet
completely wets the electrode. This trivial picture is shown only for comparison to figure 3.

Figure 7. Contact angle, αc, plotted as a function of 
� for electrowetting in a hypothetical system
with a completely ion-permeable interface such that b = 0.005 and cos α0

c = 0. The grey curve,
for C = 1.225, corresponds to regime I on figure 6; the black curve, for C = 0.817, corresponds to
regime II.

included in the theoretical treatment of electrolytic droplets surrounded by pure-dielectric
fluids. However, since a solution to this problem requires solution of Laplace’s equation
(rather than the Poisson–Boltzmann equation) in the surroundings, and the surroundings do
not have an analytically tractable shape, this important case is left for future work, perhaps
by numerical simulation. However, for a majority of applications, electrowetting systems with
one conductive and one nonconductive fluid can be replaced with ITIES, which offer much
finer control of contact angles at much lower voltages.
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5. Conclusion

Our group has worked on different aspects of the theory of ITIES for the last decade [11, 19].
Two years ago, inspired by a suggestion of Hubert Girault (EPFL), we focused attention on
three-phase systems consisting of an ITIES adjacent to a metal electrode. The initial motivation
was to understand the potential distribution near the three-phase boundary—a potentially
important question for electrocatalysis.

Field divergence near the three-phase line is a major concern in familiar liquid/liquid
electrowetting systems, which involve an interface between one conductive and one insulating
fluid [20]. Frustrating characteristics of the contact-angle response in these systems have
been attributed to this phenomenon, which is difficult to model [5]. Our investigation of the
electrostatics of ITIES showed, in contrast, that at experimentally accessible length scales,
no dramatic effects arise from the potential distribution near a three-phase line. This led
unexpectedly to the discovery of a new, ITIES-based electrowetting system [6].

This article develops our first paper, which was limited to electrowetting with ITIES at
small applied voltages [6], by extending the theory—within stated limitations of the model—to
arbitrarily large voltages. It comprises a detailed analysis of the problem, a few main results
of which were highlighted in an earlier letter [7]. Here we have (i) presented all aspects of the
derivational procedure needed to formulate and solve the electrostatic problem, and to obtain
contact angles as a function of electrode potential, (ii) displayed a complete set of results
for ITIES, which was not possible in the previous brief communication, and (iii) presented
additional results for electrowetting systems with two ionically conductive fluids, but where
the liquid/liquid interface is ion-permeable.

We unambiguously show that the ITIES-based electrowetting system allows very fine
control of the contact-angle response to potential, and can operate at voltages 10–100 times
smaller than those needed in currently existing devices [21]. Preliminary experiments have
been performed by Alice Sleightholme and Anthony Kucernak at Imperial College London,
which basically confirm the theoretical predictions [22]. These observations will be reported
elsewhere.

Along with the advantage of low-potential operation, electrowetting with ITIES allows a
relatively simple closed-form theoretical description. The system response depends primarily
on three parameters, which are determined explicitly by properties of the two electrolytic
solutions and the electrode substrate. In addition to enhancing physical insight, this suggests a
concise set of control variables for the experimental analysis of more complicated systems.

Although it may not be practically possible to realize, the case of an ion-permeable
liquid/liquid interface has its own merits. The results illustrate what may happen to an ITIES at
large voltages, which can compensate the free energies of transfer and induce ion penetration
through the liquid/liquid interface. The natural expectation would be that when a field induces
penetration, the electrowetting curve might abruptly transition to dewetting or complete wetting
of the electrode, with the direction of the transition determined by electrolyte composition.
Of course this large-voltage regime requires more rigorous analysis, which will be provided
elsewhere.

Also, the experimental setup was discussed in detail and a number of issues concerning
the counter and/or reference electrodes were brought to light. These subtleties have not
been discussed before in the electrowetting literature, although ignoring them can lead to
inexplicable discrepancies between theory and experiments.

Last, but not least, it should be emphasized that ITIES-based electrowetting systems have
great potential for additional functionalization. Both adsorption phenomena and chemical
reactivity can be controlled by the applied voltage, with the effects highly localized near the
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liquid/liquid interface [23, 24]. This opens new avenues by which to alter the optical and
sensing properties within electrowetting devices.
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Appendix. Properties of electrolytes with impermeable boundaries: basic concepts

A.1. Free energies of transfer and the ideal polarizability window

One key feature of electrowetting systems which have a dissolved salt in the droplet phase is
that the droplet/surroundings interface may be impermeable to ions over a large potential range.
Consider a case where the droplet consists of a solution of sodium chloride in water, and the
surroundings are a nonpolar solvent, such as high-molecular-weight silicone oil. (Experimental
data for this electrowetting system are presented in the review article by Mugele and Baret [4].)
In this case, the sodium chloride has extremely low solubility in the silicone; the salt remains
in water, where it is most comfortably solvated.

Even when a potential bias is applied, inducing a field to ‘push’ anions or cations, ions tend
to stay in the phase where they are well solvated. The amount of energy required for the ions to
change phases, i.e. to discard a solvation shell of one type of solvent and exchange it entirely
for another, is called the free energy of transfer. Typically, because immiscible fluids have very
different polarity, the differences in their ionic solvation energies—and thus their free energies
of transfer—are large. For instance, for aqueous sodium chloride, the free energies of transfer
for Na+ or Cl− into nitrobenzene are of order 0.3 eV; the magnitudes are similar for transfer of
tetrabutylammonium (TBA+) or tetraphenylborate (TPB−) from nitrobenzene into water.

When free energies of transfer are high, the potential drop needed to induce ion exchange
is also high: the interface acts as ‘ion-impermeable’ over a broad potential range. This range
can be determined by cyclic voltammetry; it commonly extends from zero bias up to a bias of
500 mV, and can sometimes go significantly higher than a volt.

Transfer free energies have been measured in abundance, particularly for interfaces of
aqueous solutions with nitrobenzene, dichloroethane and similar organic solvents [25, 26].
Since in these cases free energies of transfer for alkali halides are large, one would presume that
the same is the case for the aqueous NaCl/silicone oil interface, more typical of conventional
electrowetting systems. For an electrolyte/air interface (that is, if the surrounding fluid is air),
one would imagine that ionic free energies of transfer would be still higher.

The range of potentials within which there is no Faradaic current across an interface is
called the regime of ideal polarizability [27]. At an ITIES, ideal polarizability implies that
there is no ionic current across the interface. At a metal/electrolyte interface, it implies the
absence of Faradaic currents, such as those arising from electron-transfer reactions between the
electrode and dissolved ions. In this work all the interfaces with solids are taken to be ideally
polarizable8.

8 High enough voltages can always trigger electrochemical reactions at an interface. However, many metal electrodes
have a several-hundred millivolt window of ideal polarizability, the width of which can be assessed by cyclic
voltammetry; ITIES have also been observed to behave as if they are ideally polarizable over several hundred
millivolts [15].
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Figure A.1. Schematic of a parallel-plate double-layer capacitor with plate separation L along the
y-axis. The fluid between plates has dielectric constant ε; the average electrolyte concentration is
〈c〉. Between the working and counterelectrodes a potentiostat maintains potential drop 
�.

A.2. Double layers in a confined volume of electrolytic solution which conserves its contents:
tutorial example

What happens to an electrolytic phase bounded by ideally polarizable interfaces when a
potential drop is applied across it? The answer can be illustrated with the functional developed
in section 2. Although the following discussion looks somewhat tangential to electrowetting,
it is not: it provides a convenient illustration of how ideally polarizable boundaries affect the
electrostatic response of electrolytic phases, in general.

Consider the one-dimensional parallel-plate double-layer capacitor sketched in figure A.1.
In this case there is only one fluid phase; the pressure is held constant, and, because the
electrolytic solution remains in contact with a fixed electrode area, C is constant and does
not affect the position of the free-energy minimum. For simplicity the electrolyte is taken to
be symmetric, with ionic equivalent charges z+ = −z− = z; it is also assumed that each
formula unit of the salt contains only a single cation and a single anion (i.e. the salt has 1:1
stoichiometry). The electrodes of the capacitor are taken to be ideally polarizable and smooth
on molecular dimensions. A potentiostat applies a potential difference between phases e and c.

This system has been selected for the sole reason that the geometry is simple, there is only
one fluid phase, and the system boundaries are impermeable to ions—a condition which often
holds at the boundaries of electrolytic droplets in electrowetting.

Derivation of governing equations from the functional—If the electrolytic solution is ideal,
the appropriate form for W is

W = RT A
∫ L

0
cT (x0 ln x0 + x+ ln x+ + x− ln x−) dy + A

∫ L

0
ρ� dy, (A.1)

A being the surface area of the parallel electrodes, and subscripts 0, + and − corresponding
to solvent, cations and anions in the electrolytic solution, respectively; here cT is the total
molar concentration of the solution. The overall functional G is obtained by adding V from
equation (2.3) to the above and incorporating the electrostatic potential through E = −∇�.
Equilibrium is achieved when G is at a minimum with respect to the distributions of potential
and every species concentration.

As is clear from the fact that the interior of the parallel-plate capacitor is a closed system,
minimization of the functional must be performed under several constraints. The total charge
Q between plates is zero; also, the number of solvent molecules, N0, and the number of ions

22



J. Phys.: Condens. Matter 19 (2007) 375113 C W Monroe et al

present, N+ and N−, cannot change because the fluid’s boundaries are ideally polarizable. Thus

Q = A
∫ L

0
ρ dy, N0 = A

∫ L

0
cTx0 dy, and N± = A

∫ L

0
cTx± dy (A.2)

must all remain constant. (Although clearly Q = Fz(N+ − N−), and the charge is obviously
zero, it will be convenient to use Q as a Lagrangian constraint, set to zero later in the
calculation.) The functional to be varied is then

G

A
= RT

∫ L

0
cT

(
x0 ln

x0

x ref
0

+ x+ ln
x+
x ref+

+ x− ln
x−
x ref−

)
dy

+
∫ L

0
ρ(� − �∗) dy − ε0

2

∫ L

0
ε∇� · ∇� dy, (A.3)

where x ref
i are Lagrange multipliers which allow satisfaction of the constraints on N0, N+ and

N−; �∗ permits application of the constraint on Q.
Typically solutes have a much lower concentration than the solvent in electrolytic

solutions. If the solution is dilute, then because
∑

i x ref
i = 1,

x+ + x− 	 1, x ref
+ + x ref

− 	 1, and cT ≈ c0 = constant, (A.4)

where the latter conditions follow from the first, as well as equations (2.6) and (A.2). Assuming
that ε is also constant, the free energy functional can be expressed per unit electrode area as

G

A
= RT

∫ L

0

[
c+

(
ln

c+
cb

− 1

)
+ c−

(
ln

c−
cb

− 1

)
+ 2cb

]
dy

+
∫ L

0
ρ(� − �∗) dy − ε0ε

2

∫ L

0
∇� · ∇� dy, (A.5)

where the identity ci = xi cT has been used to express the result in terms of concentrations. The
bulk salt concentration cb is defined here by

cb = cTx ref
+ = cTx ref

− , (A.6)

appropriate because the electrolyte is 1:1 (N+ = N−, and either equals the total number
of dissolved salt formula units). Asymmetric electrolytes could be treated by adding
stoichiometric coefficients here; these only serve to complicate the algebra and have been
avoided for brevity.

Functional (A.5) can be varied with �, c+, and c− to obtain equations governing the
potential and ion-concentration distributions inside the capacitor. Take the variation of G
with respect to each ion-concentration distribution, with the potential and the remaining ion
concentration fixed, and equate to zero, to find

c± = cb exp

[
∓ z F(� − �∗)

RT

]
; (A.7)

the ions are Boltzmann distributed in the potential relative to �∗.9 Note that cb, which is the
concentration of anions or cations at � = �∗, remains to be found self-consistently through
the Lagrangian constraints; �∗ must also be found self-consistently, as described below.

The variation of G with respect to potential, with both ion concentrations fixed, shows

∇2(� − �∗) = − Fz

ε0ε
(c+ − c−), (A.8)

9 If the dilute-solution approximation had been avoided, Fermi-like distributions would arise here [28]. These
distributions would be parameterized by the partial molar volumes which appear in equation of state (2.6).
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i.e. that the potential obeys Poisson’s equation. Variation with � also yields a condition on
E—the charges on the surfaces of the capacitor plates must be equal and opposite, consistent
with the condition Q = 0 through Gauss’s law. In light of equations (A.7) and (A.8), �

obeys a nonlinear Poisson–Boltzmann equation within the electrolytic solution, where the ‘bulk
potential’ �∗ is chosen so that the solution accumulates no total charge.

Given that the electrolyte is dilute, symmetric and 1:1, the constraints can be
simplified significantly. The solvent concentration changes negligibly in the dilute-solution
approximation; the constraint on N0 becomes trivial and can be discarded. Also, since
Q = Fz(N+ − N−), any one of the three remaining constraints depends linearly on the others.
Last, the average concentration (an experimentally fixed system parameter) relates to the molar
contents of cations and anions through 〈c〉 = 1

2 (N+ + N−)/AL. To find the two Lagrange
multipliers �∗ and cb, one only needs to solve

∫ L

0
sinh

[
z F (� − �∗)

RT

]
dy = 0 (A.9)

on �∗, and substitute into

1

L

∫ L

0
cosh

[
z F (� − �∗)

RT

]
dy = 〈c〉

cb
= 1

χ2
(A.10)

to find cb. These simplified versions of equations (A.2) also incorporate the Boltzmann
distributions from equation (A.7). The first expresses the charge constraint and the second
that the average salt concentration, 〈c〉, is fixed. Note the second equation also introduces
the convenience parameter χ , related to the ratio of the average and bulk concentrations by
χ ≡ √

cb/〈c〉.
Thus arises a novel feature of an electrolytic phase with ion-impermeable boundaries: the

average concentration of the salt, 〈c〉 (the total number of salt formula units divided by the
solution volume) does not necessarily equal the bulk concentration of the salt, cb (the local
salt concentration in a region where � = �∗). When a potential bias is applied, anions are
drawn toward a positive potential, and cations toward a negative one—consequently the total
electrolyte concentration in the centre of the capacitor is depleted. Equation (A.10) supports
this conclusion. Hyperbolic cosines have the minimum value 1. Therefore, if the constraint in
equation (A.10) is to be satisfied, then χ � 1 and cb � 〈c〉 for any �(y).

By insertion of equation (A.7) into (A.8), one obtains

1

(χκ)2
∇2

[
z F (� − �∗)

RT

]
= sinh

[
z F (� − �∗)

RT

]
, (A.11)

where the inverse Debye length κ is given its familiar definition, in terms of the average
concentration 〈c〉, as

κ =
√

2F2z2 〈c〉
ε0εRT

. (A.12)

Equation (A.11) is identical to the familiar nonlinear Poisson–Boltzmann equation except for
the presence of the parameter χ . It can be concluded that when a potential drop is applied,
depletion of the salt at � = �∗, which occurs because χ � 1, leads to an effective increase in
Debye length.
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A.3. Solution for small voltages

Imagine that the bias is maintained sufficiently low that � − �∗ is everywhere small10.
Equation (A.11) can be approximated as

∇2

[
z F (� − �∗)

RT

]
≈ (χκ)2 z F (� − �∗)

RT
+ O

[
(� − �∗)3

]
, (A.13)

where it should be noted that the next correction is of third order. Up to third order in potential,
the charge constraint becomes

0 = z F

RT

∫ L

0
(� − �∗) dy + O

[
(� − �∗)3

]
, (A.14)

and the constraint on salt content is

1 − 1

χ2
= 1

2L

(
z F

RT

)2 ∫ L

0
(� − �∗)2 dy + O

[
(� − �∗)3

]
. (A.15)

This completes the development of governing equations for the capacitor in the regime of
quadratic potential response.

The potential drop between the capacitor’s electrodes is fixed by the potentiostat; the
electrodes themselves are equipotential surfaces. To determine the potential distribution,
equation (A.13) is solved with the following boundary conditions on �(y):

�(0) = �e and �(L) = �c. (A.16)

In the quadratic regime, the potential distribution is

� − �∗ = 
� sinh
[

1
2χκ(L − 2y)

]

2 sinh
(

1
2χκ L

) + O(
�3), (A.17)

where 
� ≡ �e − �c. The two constraint conditions, equations (A.14) and (A.15), become

�∗ = �e + �c

2
+ O(
�3),

κ L(1 − χ2) tanh
(

1
2χκ L

)

χ
[
1 − χκL

sinh(χκL)

] = 1

8

(
z F
�

RT

)2

+ O(
�3).
(A.18)

The bulk potential �∗ takes an intermediate value between the potentials at either electrode. It
can be seen from the second equation that χ → 1 as 
� → 0 and χ → 0 as 
� → ∞.

The surface-charge density in the electrolytic solution immediately adjacent to the
electrodes can also be obtained from the potential distribution in equation (A.17),

σy=0 = ε0ε∇�|y=0 = −ε0ε∇�|y=L = − ε0εχκ
�

2 tanh
(

1
2χκ L

) = −σy=L . (A.19)

Of course the surface-charge densities are equal and opposite, as is expected because Q = 0
and both electrodes have the same area.

Concentration and potential distributions for three capacitors with 
� = 50 mV are
shown in figure A.2. Three lengths are shown: κ L = 2.5, 5 and 10. The figure shows that
charge is screened over a smaller fraction of the capacitor interior as length increases (moving
down in the figure). Note that in the lower plots a potential plateau near �∗ begins to form at
the centre of the capacitor, and ‘separate’ double layers start to form near both electrodes.

10 The nonlinear case could be treated with some additional analytical gymnastics. However, the analytical equations
are more easily interpreted in the small-potential regime. Suffice it to say that the main conclusions of this work rely
mainly on approximation (A.21). For nonlinear cases, κ is replaced with κ cosh(z F
�/2RT ) (the Debye-length
contraction from nonlinear Gouy–Chapman theory [12, 13]). This can be inserted into equation (A.21) to show that
the condition is overly conservative outside the quadratic potential regime.
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Figure A.2. Concentration and potential distributions in parallel-plate double-layer capacitors with

� = 50 mV, for cases when κL = 2.5, 5, and 10.

Limiting cases—It is also instructive to explore certain limits of equations (A.17)
and (A.18). When κ L → 0:

lim
κL→0

(� − �∗) = 
�

(
1

2
− y

L

)
and lim

κL→0
σy=0 = −ε0ε


�

L
. (A.20)

These are familiar equations for parallel-plate dielectric capacitors. When the Debye length
is very long compared to the characteristic size of the phase, an electrolytic solution with
impermeable boundaries behaves like a pure-dielectric medium. The plot with κ L = 2.5 in
figure A.2 shows the approach to this regime; because the cell length is of the order of the
Debye length, the potential distribution is nearly linear.

Of course, the case of small κ is not applicable to typical electrolytic solutions, where 1/κ

tends to represent a length scale of nanometres or angstroms. However, this limit does show
that the functional approach yields satisfactory limiting behaviour.

Each of the graphs in figure A.2 shows conditions with the same potential drop 
�. As
the capacitor gets longer (as κ L increases), the bulk concentration approaches the average
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concentration. It is worthwhile to learn the potential range where the approximation cb ≈ 〈c〉
is valid. Perturbation of the second of equations (A.18) gives

χ ≈ 1 when |
�| 	 4RT

z F

√

κ L tanh

(
1

2
κ L

)
. (A.21)

At room temperature, the prefactor on the square root is about 100 mV. Thus, in a closed
electrolytic phase at ambient temperature, the concentration at �∗ can be taken to equal the
average salt concentration over a ±3 V window when κ L = 1000. As κ L increases, so does
the size of the voltage window. In short: χ ≈ 1 is an extremely good approximation, as the
neglected Faradaic processes typically begin well below 3 V.

It is most instructive to consider very large values of κ L, more typical of ordinary
electrochemical experiments. In this regime (also taking χ ≈ 1, on the basis of
equation (A.21)), the distribution of potential simplifies to

lim
κL1

(� − �∗) = 
�

2

{
exp(−κy) − exp

[
−κ L

(
1 − y

L

)]}
, (A.22)

or, examining the result near either electrode,

lim
κL1

(� − �∗) = 
�

2
exp (−κy) ; y

L
	 1,

lim
κL1

(� − �∗) = −
�

2
exp[−κ(L − y)];

(
1 − y

L

)
	 1.

(A.23)

These show that when the capacitor is very large compared to the Debye length, the interfaces
each form linear Gouy–Chapman-like double layers. This is another validation of the
constrained Lagrangian approach developed here: for large systems, it leads to conclusions in
precise agreement with those deduced from the semi-infinite linear Poisson–Boltzmann theory.

However, for the parallel-plate double-layer capacitor, an important result differs from the
standard semi-infinite treatment. Consider the surface charges at the capacitor plates. When
κ L  1, the surface-charge densities become

σy=0 = −ε0εκ
�

2
= −σy=L . (A.24)

In the capacitor, the constraints on total ion content require that surfaces maintain equal and
opposite charges, even when κ L is extremely large. Also note that differentiation of −σy=0

with respect to 
� yields a capacitance which corresponds to two linear Gouy–Chapman
capacitances in series, as one would expect.

If the above analysis is performed without the approximation of small 
�, the principal
conclusions agree with the results Gouy and Chapman obtained from nonlinear Poisson–
Boltzmann theory for semi-infinite systems [12, 13]. The parallel-plate double-layer capacitor
yields two nonlinear Gouy–Chapman capacitances in series, while �∗ remains the average of
the electrode potentials.

A.4. Working principles

In the main body of this paper, nonlinear effects are considered in detail for electrowetting with
electrolytes. Several qualitative conclusions can be drawn from the previous example, which
apply equally in the linear- and nonlinear-response regimes.

(1) Due to the impermeability of its boundaries, a closed electrolytic phase contains fixed
numbers of ions and solvent molecules. Consequently the interior of the phase has zero
net charge, even when a potential drop is applied across it.
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(2) If an electrolytic phase has an ion-impermeable surface, and has dimensions on the order
of its Debye length, then its electrostatic response at low potentials will be similar to that
of a purely dielectric medium.

(3) If a closed electrolytic phase has a characteristic size much greater than its Debye length,
double layers will form in its interior. However, these double layers appear in such a way
that the surface charges on the phase boundaries sum to zero. Thus, for an electrolytic
droplet with high ionic free energies of transfer, there are space-charge regions at both the
droplet/electrode interface and the interface between the droplet and its surrounding fluid
(see figure 1). Overall electroneutrality of the droplet results in equal and opposite space
charges within the double layers at these two boundaries.

(4) If an electrolytic droplet has impermeable boundaries and is much larger than its Debye
length, a plateau near the bulk potential �∗ extends over most of its interior; �∗ is between
the potentials at the electrode/droplet and droplet/surroundings interfaces.

(5) In closed electrolytic phases the formation of balanced double layers depletes the
electrolyte concentration at �∗, cb, below the average electrolyte concentration 〈c〉. This
change can be neglected, cb ≈ 〈c〉, over the range of experimentally accessible potentials
when the scale of the phase is greater than 1000 Debye lengths.

There are two other important qualitative aspects of electrowetting phenomena which have
already been discussed at length in earlier work [6]:

(1) In electrowetting systems with an electrolytic droplet and electrolytic surroundings, the
potential is nearly constant across the entire droplet/surroundings interface, even when
this interface is curved. The droplet/electrode and droplet/surroundings interfaces are
essentially equipotential surfaces, obeying boundary conditions like the capacitor plates
did in the previous example. The potential at the droplet surface varies only in a region
that extends fewer than two Debye lengths from the three-phase contact line.

(2) In electrowetting systems with an electrolytic droplet and electrolytic surroundings, the
potential distribution very near the three-phase contact line contributes negligibly to the
total free energy when the scale of the droplet is greater than 1000 Debye lengths.
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[25] Samec Z, Homolka D, Mareček V and Kavan L 1983 Charge transfer between two immiscible electrolyte

solutions: transfer of tris(2,2′-bipyridine)ruthenium(ii) and alkyl viologen dications across the
water/nitrobenzene, water/dichloromethane, and water/dichloroethane interfaces J. Electroanal. Chem.
145 213–8

[26] For a review see: Kornyshev A A and Volkov A G 1984 On the evaluation of standard Gibbs energies of ion
transfer between two solvents J. Electroanal. Chem. 180 363–81

[27] Newman J and Thomas-Alyea K E 2004 Electrochemical Systems 3rd edn (New Jersey: Wiley)
[28] Borukhov I, Andelman D and Orland H 2000 Adsorption of large ions from an electrolyte solution: a modified

Poisson–Boltzmann equation Electrochim. Acta 46 221–9

29

http://dx.doi.org/10.1021/la970986z
http://dx.doi.org/10.1016/j.jelechem.2005.04.031
http://dx.doi.org/10.1039/dc9847700197
http://dx.doi.org/10.1016/S0022-0728(00)00054-1
http://dx.doi.org/10.1016/j.elecom.2004.05.009
http://dx.doi.org/10.1063/1.1505862
http://dx.doi.org/10.1016/j.elecom.2004.04.022
http://dx.doi.org/10.1016/j.chemphys.2005.03.029
http://dx.doi.org/10.1016/S0022-0728(00)00484-8
http://dx.doi.org/10.1007/s101890070029
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://www.varioptic.com/en/index.php
http://dx.doi.org/10.1038/nmat1772
http://dx.doi.org/10.1021/ja0386187
http://dx.doi.org/10.1016/S0022-0728(83)80307-6
http://dx.doi.org/10.1016/0368-1874(84)83594-7
http://dx.doi.org/10.1016/S0013-4686(00)00576-4

	1. Introduction
	2. Thermodynamics of electrowetting
	2.1. The free-energy functional
	2.2. Capillary term
	2.3. Electrostatic term
	2.4. Electrochemical term

	3. Electrowetting with ITIES
	3.1. The droplet-free reference state
	3.2. Electrostatics with ITIES
	3.3. Droplet shapes with ITIES
	3.4. Contact angles for electrowetting with ITIES

	4. Electrowetting with an ion-permeable interface
	5. Conclusion
	Acknowledgments
	Appendix. Properties of electrolytes with impermeable boundaries: basic concepts
	A.1. Free energies of transfer and the ideal polarizability window
	A.2. Double layers in a confined volume of electrolytic solution which conserves its contents: tutorial example
	A.3. Solution for small voltages
	A.4. Working principles

	References

